Speech Recognition Experiments with Perceptrons

نویسنده

  • David J. Burr
چکیده

Artificial neural networks (ANNs) are capable of accurate recognition of simple speech vocabularies such as isolated digits [1]. This paper looks at two more difficult vocabularies, the alphabetic E-set and a set of polysyllabic words. The E-set is difficult because it contains weak discriminants and polysyllables are difficult because of timing variation. Polysyllabic word recognition is aided by a time pre-alignment technique based on dynamic programming and E-set recognition is improved by focusing attention. Recognition accuracies are better than 98% for both vocabularies when implemented with a single layer perceptron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Speech Recognition Using Demi-Syllable Neural Prediction Model

The Neural Prediction Model is the speech recognition model based on pattern prediction by multilayer perceptrons. Its effectiveness was confirmed by the speaker-independent digit recognition experiments. This paper presents an improvement in the model and its application to large vocabulary speech recognition, based on subword units. The improvement involves an introduction of "backward predic...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Neural networks for nonlinear discriminant analysis in continuous speech recognition

In this paper neural networks for Nonlinear Discrimi nant Analysis in continuous speech recognition are pre sented Multilayer Perceptrons are used to estimate a posteriori probabilities for Hidden Markov Model states which are the optimal discriminant features for the sepa ration of the HMM states The a posteriori probabilities are transformed by a principal component analysis to calcu late the...

متن کامل

Boosting Classification Based Speech Separation Using Temporal Dynamics

Significant advances in speech separation have been made by formulating it as a classification problem, where the desired output is the ideal binary mask (IBM). Previous work does not explicitly model the correlation between neighboring time-frequency units and standard binary classifiers are used. As one of the most important characteristics of speech signal is its temporal dynamics, the IBM c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1987